204 — Analysis of Variance gl04eac

NAG C Library Function Document

nag dummy_vars (g04eac)

1 Purpose

nag dummy vars (gO4eac) computes orthogonal polynomial or dummy variables for a factor or
classification variable.

2 Specification

#include <nag.h>
#include <nagg04.h>

void nag_dummy_vars (Nag_DummyType type, Integer n, Integer levels,
const Integer factor[], double x[], Integer tdx, const double vI[],
double num_reps[], NagError *fail)

3 Description

In the analysis of an experimental design using a general linear model the factors or classification variables
that specify the design have to be coded as dummy variables. nag dummy vars computes dummy
variables that can then be used in the fitting of the general linear model using nag regsn mult linear
(g02dac).

If the factor of length n has k levels then the simplest representation is to define & dummy variables, X
such that X; = 1 if the factor is at level j and 0 otherwise, j = 1,2,...,k. However, there is usually a mean
included in the model and the sum of the dummy variables will be aliased with the mean. To avoid the
extra redundant parameter, K — 1 dummy variables can be defined as the contrasts between one level of the
factor, the reference level and the remaining levels. If the reference level is the first level then the dummy
variables can be defined as X; = 1 if the factor is at level j and 0 otherwise, j = 2,3, ..., k. Alternatively,
the last level can be used as the reference level.

A second way of defining the £ — 1 dummy variables is to use a Helmert matrix in which levels 2,3,...,k
are compared with the average effect of the previous levels. For example if k¥ = 4 then the contrasts would
be:

I -1 -1 -1
2 1 -1 -1
3 0 2 -1
4 0 0 3

Thus variable j, j =1,2,...,k— 1 is given by
X; = —1 if factor is at level less than j + 1
X = Z{Zl ri/rjp1 if factor is at level j+ 1
X = 0 if factor is at level greater than j+ 1

where r; is the number of replicates of level j. If the factor can be considered as a set of values from an
underlying continuous variable then the factor can be represented by a set of k£ — 1 orthogonal polynomials
representing the linear, quadratic, etc. effects of the underlying variable. The orthogonal polynomial is
computed using Forsythe’s algorithm (see Forsythe (1957) and Cooper (1968)). The values of the
underlying continuous variable represented by the factor levels have to be supplied to the routine.

The orthogonal polynomials are standardized so that the sum of squares for each dummy variable is one.
For the other methods integer (4-1) representations are retained except that in the Helmert representation
the code of level j 4 1 in dummy variable j will be a fraction.

[NP3491/6] g04eac.1

g04eac NAG C Library Manual

4 Parameters
I: type — Nag DummyType Input
On entry: the type of dummy variable to be computed.
If type = Nag_Poly, an orthogonal Polynomial representation is computed.
If type = Nag_Helmert, a Helmert matrix representation is computed.
If type = Nag_ FirstLevel, the contrasts relative to the First level are computed.
If type = Nag_LastLevel, the contrasts relative to the Last level are computed.
If type = Nag_AllLevels, a Complete set of dummy variables is computed.
Constraint: type = Nag_ Poly, Nag Helmert, Nag FirstLevel, Nag_LastLevel or Nag_AllLevels.

2: n — Integer Input
On entry: the number of observations for which the dummy variables are to be computed, n.

Constraint: n > levels.

3: levels — Integer Input
On entry: the number of levels of the factor, k.

Constraint: levels > 2.

4: factor[n] — const Integer Input
On entry: the n values of the factor.

Constraint: 1 < factor[s — 1] < levels, 1 =1,2,... n.

5: x[n][tdx] — double Output

Note: the second dimension of the array x must be at least levels—1 if type = Nag Poly,
Nag Helmert, Nag_FirstLevel or Nag_ LastLevel and levels if type = Nag_AllLevels.

On exit: the n by k* matrix of dummy variables, where k* =%k —1 if type = Nag_ Poly,
Nag Helmert, Nag_FirstLevel or Nag_LastLevel and k* = k if type = Nag_AllLevels.
6: tdx — Integer Input

On entry: the second dimension of the array x as declared in the function from which
nag_dummy vars is called.

Constraints:
tdx > levels—1 if type = Nag Poly, Nag Helmert, Nag FirstLevel or Nag LastLevel,
tdx > levels if type = Nag_AllLevels.

7: vldimI] — const double Input

Note: the dimension, diml, of the array v must be at least levels if type = Nag Poly and 1
otherwise.

On entry: if type = Nag Poly, the k distinct values of the underlying variable for which the
orthogonal polynomial is to be computed. If type # Nag Poly, v is not referenced.

Constraint: if type = Nag_Poly, then the k values of v must be distinct.

8: num_reps|levels] — double Output

On exit: num_reps[¢ — 1] contains the number of replications for each level of the factor, 7;,
1=1,2,... k.

g04eac.? [NP3491/6]

204 — Analysis of Variance gl04eac

9: fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE_INT ARG LT
On entry, levels must not be less than 2: levels = <value>.
NE 2 INT ARG LT

On entry, n = <value> while levels = <value>.
These parameters must satisfy n > levels.

On entry, tdx = <value> while levels = <value>.
These parameters must satisfy tdx > levels.

On entry, tdx = <value> while levels—1 = <value>.
These parameters must satisfy tdx > levels—1.

NE_BAD PARAM

On entry, parameter type had an illegal value.

NE_ALLOC_FAIL

Memory allocation failed.

NE_ARRAY_CONS
The contents of array v are not valid.

Constraint: all values of v must be distinct.

NE_INT_ARRAY_CONS
On entry, factor[0] = <value>.

Constraint: 1 < factor[0] < levels.

NE_GO4EA_LEVELS

All levels are not represented in array factor.

NE_GO04EA_ORTHO_POLY

An orthogonal polynomial has all values zero. This will be due to some values of v being close
together. This can only occur if type = Nag_ Poly.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

6 Further Comments

Other routines for fitting polynomials can be found in Chapter e02.

6.1 Accuracy

The computations are stable.

[NP3491/6] g04eac.3

g04eac NAG C Library Manual

6.2 References
Cooper B E (1968) Algorithm AS 10. The use of orthogonal polynomials Appl. Statist. 17 283-287

Forsythe G E (1957) Generation and use of orthogonal polynomials for data fitting with a digital computer
J. Soc. Indust. Appl. Math. S5 74-88

7 See Also

nag_regsn_mult linear (g02dac)
Chapter 02

8 Example

Data are read in from an experiment with four treatments and three observations per treatment with the
treatment coded as a factor. nag dummy vars is used to compute the required dummy variables and the
model is then fitted by nag _regsn_mult linear (g02dac).

8.1 Program Text

/* nag_dummy_vars (gO4eac) Example Program.
*

* Copyright 2000 Numerical Algorithms Group.
*

* Mark 6, 2000.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg02.h>
#include <nagg04.h>

int main (void)
{
char mean(2], typel2], weight[2];
double *b=0, *cov=0, df, *h=0, *p=0, *qg=0, *rep, *res, rss, *se=0, tol;
double *v=0, *com_ar=0, *wtptr=0, *wt=0, *x=0, *y=0;
Integer i, *ifact=0, ip, irank, *isx=0, j, levels, m, n, tdqg, tdx;
Integer exit_status=0;
Boolean svd;
Nag_DummyType dum_type;
NagError fail;
Nag_IncludeMean mean_enum;

INIT_FAIL(fail);
Vprintf ("gO4eac Example Program Results\n");

/* Skip heading in data file */
Vscanf ("s*[“\n]") ;

Vscanf ("%1d %1d %s %s %s", &n, &levels, type, weight, mean);
)

if (*type == 'P’
dum_type = Nag_Poly;
else if (*type == 'H')

dum_type = Nag_Helmert;
else if (*type == 'F’)
dum_type = Nag_FirstLevel;

g04eac.4 [NP3491/6]

204 — Analysis of Variance

else if (*type == 'L’)
dum_type = Nag_LastLevel;
else if (*type == 'C’)
dum_type = Nag_AllLevels;
else
dum_type = (Nag_DummyType)=-999;

if (*mean == 'M’)
mean_enum = Nag_MeanInclude;
else if (*mean == 'Z')
mean_enum = Nag_MeanZero;
else
mean_enum = (Nag_IncludeMean)-999;
if (dum_type == Nag_AllLevels)
tdx = levels;
else

tdx = levels - 1;

if (! (x = NAG_ALLOC(n*tdx, double))
|| !'!(rep = NAG_ALLOC(levels, double)))

Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
3
if (dum_type == Nag_Poly)
{
if (! (v=NAG_ALLOC(levels, double)))

Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

else

{
if (! (v=NAG_ALLOC (1, double)))

Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

if (!(wt = NAG_ALLOC(n, double))
| !'(y = NAG_ALLOC(n, double))
| !(ifact = NAG_ALLOC(n, Integer)))
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
Vprintf ("\n") ;
if (*weight == 'W’)
{
for (1 = 1; 1 <= n; ++1)

Vscanf ("$1ld %1f %1f", &ifactl[i - 1], &yl[i - 11,

wtptr=wt;

[NP3491/6]

swtl[i - 11);

gl04eac

g04eac.5

gl04eac

}

else
{

i <= n; ++i)
&ifact[i -

for (i = 1;
Vscanf ("%1d %1f",
wtptr = 0O;

1],

}
if (dum_type Nag_Poly)
for (j = 1; j <= levels; ++7j)
Vscanf ("s1f", - 11);

&v[j

/* Calculate dummy variables */

gO4deac (dum_type, n, levels, ifact, x,

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from gO4eac.\n%s\n",
exit_status = 1;
goto END;
}
m = tdx;
ip = m;
if (mean_enum == Nag_MeanInclude)
++ip;
if (! (b=NAG_ALLOC(ip, double))

double))
cov=NAG_ALLOC (ip* (ip+1) /2,
p=NAG_ALLOC(2*ip + ip*ip,
com_ar=NAG_ALLOC(5* (ip-1)
h=NAG_ALLOC(n, double))
res=NAG_ALLOC(n, double))
g=NAG_ALLOC(n* (ip+1), double))
tdg = ip+1)
1sx=NAG_ALLOC (m,

|| !(se=NAG_ALLOC(ip,
[t
[
[
[t
[t
[t
[
[

Integer)))

tdx,

NAG C Library Manual

&y[i = 11);

v, rep, &fail);

fail.message) ;

double))
double))
+ ip*ip,

double))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
for (j = 1; j <= m; ++3j)
isx[j - 11 = 1;
/* Set tolerance */
tol = le-5;
g02dac (mean_enum, n, x, tdx, m, isx, ip, y, wtptr, &rss, &df, b,
se, cov, res, h, g, tdgq, &svd, &irank, p, tol, com_ar, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from gO4dac.\n%s\n", fail.message);
exit_status = 1;
goto END;
3
if (svd)
Vprintf (" %s%41d\n\n", "Model not of full rank, rank = ", irank);
Vprintf (" %s %12.4e\n", "Residual sum of squares = ", rss);

g04eac.6

[NP3491/6]

204 — Analysis of Variance

Vprintf (" %s%4.0f\n\n","Degrees of freedom = ", d4df);
Vprintf ("$s\n\n", "Variable Parameter estimate
for (j = 1; j <= ip; ++3j)
Vprintf (" %61d %20.4e %20.4e\n", j, blj - 11, selj
END:
if (x) NAG_FREE(x);
if (rep) NAG_FREE (rep)
if (v) NAG_FREE(V);
if (v) NAG_FREE(V);
if (wt) NAG_FREE (wt);
if (y) NAG_FREE(y);
if (ifact) NAG_FREE (ifact);
if (b) NAG_FREE(Db);
if (se) NAG_FREE(se);
if (cov) NAG_FREE(cov) ;
if (p) NAG_FREE(p);
if (com_ar) NAG_FREE (com_ar) ;
if (h) NAG_FREE (h);
if (res) NAG_FREE(res);
if (qg) NAG_FREE(q);
if (isx) NAG_FREE (isx);
return exit_status;
}
8.2 Program Data
gO4eac Example Program Data
124 CUM
1 33.63
4 39.62
2 38.18
3 41.40
4 38.02
2 35.83
4 35.99
1 36.58
3 42.92
1 37.80
3 40.43
2 37.89
8.3 Program Results
gO04eac Example Program Results
Model not of full rank, rank = 4
Residual sum of squares = 2.2227e+01
Degrees of freedom = 8
Variable Parameter estimate Standard error
1 3.0557e+01 3.8494e-01
2 5.4467e+00 8.3896e-01
3 6.7433e+00 8.3896e-01
4 1.1047e+01 8.3896e-01
5 7.3200e+00 8.3896e-01

gl04eac

Standard error");

11);

[NP3491/6]

g04eac.7 (last)

